Instantly Decodable versus Random Linear Network Coding: A Comparative Framework for Throughput and Decoding Delay Performance
نویسندگان
چکیده
This paper studies the tension between throughput and decoding delay performance of two widely-used network coding schemes: random linear network coding (RLNC) and instantly decodable network coding (IDNC). A single-hop broadcasting system model is considered that aims to deliver a block of packets to all receivers in the presence of packet erasures. For a fair and analytically tractable comparison between the two coding schemes, the transmission comprises two phases: a systematic transmission phase and a network coded transmission phase which is further divided into rounds. After the systematic transmission phase and given the same packet reception state, three quantitative metrics are proposed and derived in each scheme: 1) the absolute minimum number of transmissions in the first coded transmission round (assuming no erasures), 2) probability distribution of extra coded transmissions in a subsequent round (due to erasures), and 3) average packet decoding delay. This comparative study enables application-aware adaptive selection between IDNC and RLNC after systematic transmission phase. One contribution of this paper is to provide a deep and systematic understanding of the IDNC scheme, to propose the notion of packet diversity and an optimal IDNC encoding scheme for minimizing metric 1. This is generally NP-hard, but nevertheless required for characterizing and deriving all the three metrics. Analytical and numerical results show that there is no clear winner between RLNC and IDNC if one is concerned with both throughput and decoding delay performance. IDNC is more preferable than RLNC when the number of receivers is smaller than packet block size, and the case reverses when the number of receivers is much greater than the packet block size. In the middle regime, the choice can depend on the application and a specific instance of the problem. Index Terms Packet broadcast, network coding, minimum clique cover, throughput, delay ar X iv :1 20 8. 23 87 v1 [ cs .I T ] 1 1 A ug 2 01 2
منابع مشابه
From Instantly Decodable to Random Linear Network Coding
Our primary goal in this paper is to traverse the performance gap between two linear network coding schemes: random linear network coding (RLNC) and instantly decodable network coding (IDNC) in terms of throughput and decoding delay. We first redefine the concept of packet generation and use it to partition a block of partially-received data packets in a novel way, based on the coding sets in a...
متن کاملOn Throughput and Decoding Delay Performance of Instantly Decodable Network Coding
In this paper, a comprehensive study of packetbased instantly decodable network coding (IDNC) for singlehop wireless broadcast is presented. The optimal IDNC solution in terms of throughput is proposed and its packet decoding delay performance is investigated. Lower and upper bounds on the achievable throughput and decoding delay performance of IDNC are derived and assessed through extensive si...
متن کاملOn the Packet Decoding Delay of Linear Network Coded Wireless Broadcast
We apply linear network coding (LNC) to broadcast a block of data packets from one sender to a set of receivers via lossy wireless channels, assuming each receiver already possesses a subset of these packets and wants the rest. We aim to characterize the average packet decoding delay (APDD), which reflects how soon each individual data packet can be decoded by each receiver on average, and to m...
متن کاملApproximating Throughput and Packet Decoding Delay in Linear Network Coded Wireless Broadcast
In this paper, we study a wireless packet broadcast system that uses linear network coding (LNC) to help receivers recover data packets that are missing due to packet erasures. We study two intertwined performance metrics, namely throughput and average packet decoding delay (APDD) and establish strong/weak approximation relations based on whether the approximation holds for the performance of e...
متن کاملDecoding Delay Controlled Reduction of Completion Time in Instantly Decodable Network Coding
For several years, the completion time and the decoding delay problems in Instantly Decodable Network Coding (IDNC) were considered separately and were thought to completely act against each other. Recently, some works aimed to balance the effects of these two important IDNC metrics but none of them studied a further optimization of one by controlling the other. In this paper, we study the effe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1208.2387 شماره
صفحات -
تاریخ انتشار 2012